Bimodal action of menthol on the transient receptor potential channel TRPA1.
نویسندگان
چکیده
TRPA1 is a calcium-permeable nonselective cation transient receptor potential (TRP) channel that functions as an excitatory ionotropic receptor in nociceptive neurons. TRPA1 is robustly activated by pungent substances in mustard oil, cinnamon, and garlic and mediates the inflammatory actions of environmental irritants and proalgesic agents. Here, we demonstrate a bimodal sensitivity of TRPA1 to menthol, a widely used cooling agent and known activator of the related cold receptor TRPM8. In whole-cell and single-channel recordings of heterologously expressed TRPA1, submicromolar to low-micromolar concentrations of menthol cause channel activation, whereas higher concentrations lead to a reversible channel block. In addition, we provide evidence for TRPA1-mediated menthol responses in mustard oil-sensitive trigeminal ganglion neurons. Our data indicate that TRPA1 is a highly sensitive menthol receptor that very likely contributes to the diverse psychophysical sensations after topical application of menthol to the skin or mucous membranes of the oral and nasal cavities.
منابع مشابه
4-isopropylcyclohexanol has potential analgesic effects through the inhibition of anoctamin 1, TRPV1 and TRPA1 channel activities
Interactions between calcium-activated chloride channel anoctamin 1 (ANO1) and transient receptor potential vanilloid 1 (TRPV1) enhance pain sensations in mice, suggesting that ANO1 inhibition could have analgesic effects. Here we show that menthol and the menthol analogue isopropylcyclohexane (iPr-CyH) inhibited ANO1 channels in mice. The iPr-CyH derivative 4-isopropylcyclohexanol (4-iPr-CyH-O...
متن کاملNoxious Cold Ion Channel TRPA1 Is Activated by Pungent Compounds and Bradykinin
Six members of the mammalian transient receptor potential (TRP) ion channels respond to varied temperature thresholds. The natural compounds capsaicin and menthol activate noxious heat-sensitive TRPV1 and cold-sensitive TRPM8, respectively. The burning and cooling perception of capsaicin and menthol demonstrate that these ion channels mediate thermosensation. We show that, in addition to noxiou...
متن کاملMore than cool: promiscuous relationships of menthol and other sensory compounds.
Several temperature-activated transient receptor potential (thermoTRP) ion channels are the molecular receptors of natural compounds that evoke thermal and pain sensations. Menthol, popularly known for its cooling effect, activates TRPM8--a cold-activated thermoTRP ion channel. However, human physiological studies demonstrate a paradoxical role of menthol in modulation of warm sensation, and he...
متن کاملCamphor activates and sensitizes transient receptor potential melastatin 8 (TRPM8) to cooling and icilin.
Camphor is known to potentiate both heat and cold sensations. Although the sensitization to heat could be explained by the activation of heat-sensitive transient receptor potential (TRP) channels TRPV1 and TRPV3, the camphor-induced sensitization to cooling remains unexplained. In this study, we present evidence for the activation of the cold- and menthol-sensitive channel transient receptor po...
متن کاملHigh-Concentration L-Menthol Exhibits Counter-Irritancy to Neurogenic Inflammation, Thermal and Mechanical Hyperalgesia Caused by Trans-cinnamaldehyde.
UNLABELLED The transient receptor potential cation channel subfamily M 8 (TRPM8) agonist L-menthol has been used traditionally for its topical counterirritant properties. Although the use of topical L-menthol for pain is casuistically established, evidence regarding its efficacy is negligible. This study aimed to characterize the effect of L-menthol as a counterirritant on cutaneous pain and hy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 27 37 شماره
صفحات -
تاریخ انتشار 2007